研究成果(発表論文、総説)(*, corresponding author)

2024

review

Kotani T*, Yasuda Y, Nakatogawa H (2024) Molecular Mechanism of Autophagy, Cytoplasmic Zoning by Lipid Membranes. J Biochem. 175(2):155-165.

2023

Kotani T, Sakai Y, Kirisako H, Kakuta C, Kakuta S, Ohsumi Y, Nakatogawa H* (2023) A mechanism that ensures non-selective cytoplasm degradation by autophagy. Nat. Commun. 14, Article number: 5815

Hitomi K, Kotani T, Noda N.N, Kimura Y, Nakatogawa H* (2023) The Atg1 complex, Atg9, and Vac8 recruit PI3K complex I to the pre-autophagosomal structure. J. Cell Biol. 222 (8): e202210017.

review

Rogov VV, Nezis IP, Tsapras P, Zhang H, Dagdas Y, Noda NN, Nakatogawa H, Wirth M, Mouilleron S, McEwan DG, Behrends C, Deretic V, Elazar Z, Tooze SA, Dikic I, Lamark T & Johansen T* (2023) Atg8 family proteins, LIR/AIM motifs and other interaction modes. Autophagy Rep. Published online: 19 Mar.

2022

Mochida K, Otani T, Katsumata Y, Kirisako H, Kakuta C, Kotani T, Nakatogawa H* (2022) Atg39 links and deforms the outer and inner nuclear membranes in selective autophagy of the nucleus. J. Cell Biol. 221 (2): e202103178.

review

Mochida K, Nakatogawa H* (2022) ER-phagy: selective autophagy of the endoplasmic reticulum. EMBO Rep. e55192.

Mochida K, Nakatogawa H* (2022) Atg39 binding to the inner nuclear membrane triggers nuclear envelope deformation in piecemeal macronucleophagy. Autophagy Published online: 29 Apr.

Li Z, Nakatogawa H* (2022) Degradation of nuclear components via different autophagy pathways. Trends in Cell Biol. 32 (7): 574-584.

2021

Maruyama T, Alam JM, Fukuda T, Kageyama S, Kirisako H, Ishii Y, Shimada I, Ohsumi Y, Komatsu M, Kanki T, Nakatogawa H, Noda N.N* (2021) Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis. Nat. Struct. Mol. Biol. 28, 583-593.

review

中戸川 仁* (2021) 酵母の選択的オートファジー 実験医学 特集「選択的オートファジー〜既成概念を覆す分子機構と生理作用」 13, 2039-2045.

2020

Matoba K, Kotani T, Tsutsumi A, Tsuji T, Mori T, Noshiro D, Sugita Y, Nomura N, Iwata S, Ohsumi Y, Fujimoto T, Nakatogawa H, Kikkawa M, Noda N.N* (2020) Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–1193.

Meguro S, Zhuang X, Kirisako H, Nakatogawa H* (2020) Pex3 confines pexophagy receptor activity of Atg36 to peroxisomes by regulating Hrr25-mediated phosphorylation and proteasomal degradation. J. Biol. Chem.295, 16292-16298.

Mochida K**, Yamasaki A** (these authors contributed equally to this work), Matoba K, Kirisako H, Noda. N.N*, Nakatogawa H* (2020) Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes. Nat. Commun. 11, 3306.

Tomioka Y, Kotani T, Kirisako H, Oikawa Y, Kimura Y, Hirano H, Ohsumi Y, Nakatogawa H* (2020) TORC1 inactivation stimulates autophagy of nucleoporin and nuclear pore complexes. J. Cell Biol. 219 (7): e201910063.

Obara K*, Kotani T, Nakatogawa H, Kihara A, Kamura T (2020) N-glycosylation of Rim21 at an unconventional site fine-tunes its behavior in the plasma membrane. Cell. Struct. Funct. 45, 1-8.

review

Mochida K, Nakatogawa H* (2020) Atg8-mediated super-assembly of Atg40 induces local ER remodeling in reticulophagy. Autophagy 16(12) :2299-2300.

Nakatogawa H* (2020) Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol. 21, 439–458.

Nakatogawa H* (2020) Autophagic degradation of the endoplasmic reticulum. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 96, 1-9.

2019

Osawa T, Kotani T, Kawaoka T, Hirata E, Suzuki K, Nakatogawa H, Ohsumi Y, Noda NN* (2019) Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26, 281-288

Harada K**, Kotani T** (these authors contributed equally to this work), Kirisako H, Sakoh-Nakatogawa M, Oikawa Y, Kimura Y, Hirano H, Yamamoto H, Ohsumi Y, Nakatogawa H* (2019) Two distinct mechanisms target the autophagy-related E3 complex to the pre-autophagosomal structure. eLife 8, e43088

Shima T, Kirisako H, Nakatogawa H* (2019) COPII vesicles contribute to autophagosomal membranes. J. Cell Biol. 218, 1503-1510

review

中戸川 仁* 小谷 哲也 (2019) オートファゴソーム形成機構の最新像 生化学 91, 602-610.

中戸川 仁* (2019) オートファジーと脂質との新たなつながり セラミド研究の新展開~基礎から応用へ~(編集: セラミド研究会) 164-172.

2018

Liu XM, Yamasaki A, Du XM, Coffman VC, Ohsumi Y, Nakatogawa H, Wu JQ, Noda NN, Du LL* (2018) Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein. eLife 7, e41237

Kotani T, Kirisako H, Koizumi M, Ohsumi Y, Nakatogawa H* (2018) The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proc. Natl. Acad. Sci. USA. 115, 10363-10368

Furukawa K*, Fukuda T, Yamashita SI, Saigusa T, Kurihara Y, Yoshida Y, Kirisako H, Nakatogawa H, Kanki T* (2018) The PP2A-like protein phosphatase Ppg1 and the Far complex cooperatively counteract CK2-mediated phosphorylation of Atg32 to inhibit mitophagy. Cell Rep. 23, 3579-3590.

review

中戸川 仁* (2018) ERファジー―オートファジーによる小胞体の選択的分解 医学のあゆみ 特集「蛋白質代謝医学―構造・機能の研究から臨床応用まで」 267, 1063-1068.

Nakatogawa H* (2018) Spoon-feeding ribosomes to autophagy. Mol Cell. 71, 197-199.

中戸川 万智子*, 中戸川 仁 (2018) オートファジーと脂質恒常性 Plant Morphology 30, 25-29.

2017

review

中戸川 仁* (2017) オートファゴソームの形成における膜動態のメカニズム オートファジー 分子メカニズムの理解から病態の解明まで (監修: 大隅良典, 編集: 吉森 保, 水島 昇, 中戸川 仁), 41-51.

中戸川 仁* (2017) オートファジーによるオルガネラの選択的分解:酵母における ERファジーおよびヌクレオファジーの発見 42, 181-185.

持田 啓佑*, 中戸川 仁* (2017) 酵母における選択的オートファジー 実験医学増刊 35, 82-89.

持田 啓佑*, 中戸川 仁 (2017) ERファジーとヌクレオファジー オートファジーによる小胞体と核の分解 化学と生物 55, 86-87.

中戸川 仁* (2017) 酵母と研究へのまなざし―大隅先生についてのエピソード 科学 87, 3-4.

中戸川 仁* (2017) オートファジー:ノーベル賞に至るまでの研究発展の経緯 学術の動向 222, 8-12.

2016

Yamasaki A, Watanabe Y, Adachi W, Suzuki K, Matoba K, Kirisako H, Kumeta H, Nakatogawa H, Ohsumi Y, Inagaki F, Noda NN* (2016) Structural basis for receptor-mediated selective autophagy of aminopeptidase I aggregates. Cell Rep. 16, 19-27.

review

Nakatogawa H* (2016) Eating the ER and the nucleus for survival under starvation conditions. Mol. Cell Oncol. 3, e1073416.

Klionsky DJ et al. (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222.

中戸川 仁* (2017) 大隅良典先生とオートファジー 応用物理 86, 3-4.

中戸川 仁* (2016) オートファジー関連遺伝子の発見 Medical Science Digest 42, 558-560.

小谷哲也*、中戸川 仁 (2016) オートファジーの分子メカニズム 臨床免疫・アレルギー科 66, 301-308.

2015

Sakakibara K, Eiyama A, Suzuki SW, Sakoh‐Nakatogawa M, Okumura N, Tani M, Hashimoto A, Nagumo S, Kondo‐Okamoto N, Kondo‐Kakuta C, Asai E, Kirisako H, Nakatogawa H, Kuge O, Takao T, Ohsumi Y, Okamoto K* (2015) Phospholipid methylation controls Atg32‐mediated mitophagy and Atg8 recycling. EMBO J 34, 2703-2719.

Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, Nakatogawa H* (2015) Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature, 522, 359-362.

Sakoh-Nakatogawa M, Kirisako H, Nakatogawa H*, Ohsumi Y* (2015) Localization of Atg3 to autophagy-related membranes and its enhancement by the Atg8-family interacting motif to promote expansion of the membranes. FEBS Lett. 589, 744-749.

review

Nakatogawa H*, Mochida K (2015) Reticulophagy and nucleophagy: new findings and unsolved issues. Autophagy 11, 2377-2378.

Mochida K, Nakatogawa H* (2015) Appetite for ER/nucleus destruction. Cell Cycle 14, 3209-3210.

Nakatogawa H* (2015) Regulated Degradation: Controlling the stability of autophagy gene transcripts. Dev. Cell 34, 132-134.

Nakatogawa H* (2015) Hrr25: An emerging major player in selective autophagy regulation in Saccharomyces cerevisiae. Autophagy 11, 432-433.

中戸川 仁*、持田 啓佑 (2015) オートファジーによる小胞体と核の分解 実験医学 33, 2986-2989.

持田 啓佑*、中戸川 仁 (2015) オートファジーによる小胞体と核の選択的な分解機構 細胞工学 34, 1076-1077.

持田 啓佑*、中戸川 仁 (2015) 選択的なオートファジーによる小胞体および核の分解 ライフサイエンス 新着論文レビュー.

2014

Knorr RL*, Nakatogawa H, Ohsumi Y, Lipowsky R, Baumgart T, Dimova R* (2014) Membrane morphology is actively transformed by covalent binding of the protein Atg8 to PE-lipids. PLoS One 9, e115357.

Mochida K, Ohsumi Y, Nakatogawa H*
(2014) Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of α-mannosidase under nitrogen starvation conditions. FEBS Lett. 588, 3862-3869.

Tanaka C, Tan LJ, Mochida K, Kirisako H, Koizumi M, Asai E, Sakoh-Nakatogawa M, Ohsumi Y, Nakatogawa H*
(2014) Hrr25 triggers selective autophagy–related pathways by phosphorylating receptor proteins. J. Cell Biol. 207, 91-105.

review

Nakatogawa H*, Ohsumi Y* (2014) Autophagy: close contact keeps out the uninvited. Curr. Biol. 24, R560-R562.

中戸川 仁* (2014) オートファジーにおける二つのユビキチン様結合システムの役割と作動機構 生化学 86, 441-451.

2013 

Sakoh-Nakatogawa M, Matoba K, Asai E, Kirisako H, Ishii J, Noda NN, Inagaki F, Nakatogawa H*, Ohsumi Y* (2013) Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat. Struct. Mol. Biol. 20, 433-439.

Fujita N, Morita E, Itoh T, Tanaka A, Nakaoka M, Osada Y, Umemoto T, Saitoh T, Nakatogawa H, Kobayashi S, Haraguchi T, Guan JL, Iwai K, Tokunaga F, Saito K, Ishibashi K, Akira S, Fukuda M, Noda T*, Yoshimori T* (2013) Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J. Cell Biol. 203, 115-128.

review

Nakatogawa H* (2013) Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem. 55, 39-50.

中戸川 仁*、大隅 良典* (2013) 酵母が映し出すオートファゴソーム形成機構の最新像と未解決の重要課題 - 命名から50年 オートファジーで解明した謎,解明したい謎 実験医学 31, 1348-1354.

中戸川 万智子*、中戸川 仁、大隅良典 (2013) ユビキチン様タンパク質Atg12-Atg5結合体はAtg3の活性中心の再編成をひき起こしその酵素活性を上昇させる ライフサイエンス 新着論文レビュー.

2012 

Yamaguchi M, Matoba K, Sawada R, Fujioka Y, Nakatogawa H, Yamamoto H, Kobashigawa Y, Hoshida H, Akada R, Ohsumi Y, Noda NN*, Inagaki F* (2012) Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol. 19, 1250-1256.

Nakatogawa H*, Ohbayashi S, Sakoh-Nakatogawa M, Kakuta S, Suzuki SW, Kirisako H, Kondo-Kakuta C, Noda NN, Yamamoto H, Ohsumi Y (2012) The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J. Biol. Chem. 287, 28503-28507.

Kondo-Okamoto N, Noda NN, Suzuki SW, Nakatogawa H, Takahashi I, Matsunami M, Hashimoto A, Inagaki F, Ohsumi Y, Okamoto K* (2012) Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem. 287, 10631-10638.

Nakatogawa H*, Ishii J, Asai E, Ohsumi Y* (2012) Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy 8, 177-186.

review


Nakatogawa H*, Ohsumi Y (2012) Atg4 proteases in autophagy. Handbook of Proteolytic Enzymes, 3rd Edn., 2138-2142.

Klionsky DJ et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8, 445-544.

Nakatogawa H*, Ohsumi Y (2012) SDS-PAGE techniques to study ubiquitin-like conjugation systems in yeast autophagy. Methods Mol. Biol. 832, 519-529.

2011 

Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, Nakatogawa H, Ohsumi Y, Inagaki F* (2011) Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44, 462-475.

review

中戸川 仁*、大隅 良典* (2011) オートファジーにおける膜形成のダイナミクスと分子メカニズム 細胞内のリノベーション機構 タンパク質分解系による生体制御. 実験医学増刊 29, 120-126.

2010 

Yamaguchi M, Noda NN, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F* (2010) Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 285, 29599-295607.

Kumeta H, Watanabe M, Nakatogawa H, Yamaguchi M, Ogura K, Adachi W, Fujioka Y, Noda NN, Ohsumi Y, Inagaki F* (2010) The NMR structure of the autophagy-related protein Atg8. J. Biomol. NMR. 47, 237-241.

Fujioka Y, Noda NN, Nakatogawa H, Ohsumi Y, Inagaki F* (2010) The dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J. Biol. Chem. 285, 1508-1515.

2009 

review

Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y* (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458-467.

中戸川 仁* (2009) Atg8の解析から探るオートファジーの分子メカニズム 化学と生物 44, 224-226.

2008  

Noda NN**, Kumeta H**, Nakatogawa H** (**these authors contributed equally to this work), Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y*, Inagaki F* (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211-1218.

Oh-oka K, Nakatogawa H, Ohsumi Y* (2008) Physiological pH and acidic phospholipids contribute to substrate specificity in lipidation of Atg8. J. Biol. Chem. 283, 21847-21852.

review

Nakatogawa H, Oh-oka K, Ohsumi Y* (2008) Lipidation of Atg8: How is substrate specificity determined without a canonical E3 enzyme? Autophagy 4, 911-913.

Nakatogawa H, Ohsumi Y* (2008) Starved cells eat ribosomes. Nat. Cell Biol. 10, 505-507.

中戸川 仁、大隅 良典* (2008) 出芽酵母のオートファジー -分子機構研究の最前線 メンブレントラフィックの奔流 蛋白質 核酸 酵素 増刊 53, 2099-2105.

中戸川 仁* (2008) オートファジー キーワード:蛋白質の一生 蛋白質 核酸 酵素 増刊 53, 913-914.

中戸川 仁、大隅 良典* (2008) 細胞質の隔離と輸送に特化したオルガネラ:オートファゴソームの構築機構 33, 2-8.

2007 

Nakatogawa H, Ichimura Y, Ohsumi Y* (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165-178.

review

中戸川 仁* (2007) オートファジーにおける膜新成のメカニズム -ユビキチン様タンパク質Atg8が統御するユニークな膜動態- 生化学 79, 20-23.

中戸川 仁* (2007) オートファゴソーム形成のメカニズム解明に突破口は開けるか: ユビキチン様タンパク質Atg8の予想外の機能 細胞工学 26, 1280-1281.

2006 

Muto H, Nakatogawa H, Ito K* (2006) Genetically encoded but non-polypeptide prolyl-tRNA functions in the A-site for SecM-mediated ribosomal stall. Mol. Cell 22, 545-552.

review

中戸川 仁*、花田 孝雄*、鎌田 芳彰*、小原 圭介*、関藤 孝之* (2006) オートファゴソームを紡ぎ出す5つのAtgタンパク質群 ユビキチン-プロテアソーム系とオートファジー 蛋白質 核酸 酵素 増刊 51, 1457-1463.

2005 

Nakatogawa H, Murakami A, Mori H, Ito K* (2005) SecM facilitates translocase function of SecA by localizing its biosynthesis. Genes Dev. 19, 436-444.

2004 

Murakami A, Nakatogawa H, Ito K* (2004) Translation arrest of SecM is essential for the basal and regulated expression of SecA. Proc. Natl. Acad. Sci. USA 101, 12330-12335.

review

Nakatogawa H, Murakami A, Ito K* (2004) Control of SecA and SecM translation by protein secretion. Curr. Opi. Microbiol. 7, 145-150.

Nakatogawa H, Ito K* (2004) Intraribosomal regulation of expression and fate of proteins. Chembiochem 5, 48-51.

中戸川 仁、伊藤 維昭* (2004) 蛋白質の誕生におけるリボソームのトンネルの役割 細胞における蛋白質の一生 蛋白質 核酸 酵素 増刊 7, 829-833.

2003 

review

中戸川 仁、村上 亜希子、伊藤 維昭* (2003) タンパク質分泌モニターSecMによるSecAの発現制御機構 -難産なタンパク質が誕生するとき 実験医学 21, 869-873.

中戸川 仁、伊藤 維昭* (2003) 蛋白質の膜透過と翻訳アレスト 蛋白質 核酸 酵素 増刊 RNAの細胞生物学 48, 338-345.

2002 

Nakatogawa H, Ito K* (2002) The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629-636.

review

中戸川 仁、伊藤 維昭* (2002) 大腸菌におけるタンパク質膜透過ならびに輸送 わかる実験医学シリーズ 細胞内輸送がわかる 78-86.

2001 

Nakatogawa H, Ito K* (2001) Secretion monitor, SecM, undergoes self translation arrest in the cytosol. Mol. Cell 7, 185-192.

2000 

Matsumoto G, Nakatogawa H, Mori H, Ito K* (2000). Genetic dissection of SecA: suppressor mutations against the secY205 translocase defect. Genes Cells 5, 991-1000.

Nakatogawa H, Mori H, Ito K* (2000) Two independent mechanisms down-regulate the intrinsic SecA ATPase activity. J. Biol. Chem. 275, 33209-33212.

Nakatogawa H, Mori H, Matsumoto G, Ito K* (2000) Characterization of a mutant form of SecA that alleviates a SecY defect at low temperature and shows a synthetic defect with the SecY alteration at high temperature. J. Biochem. 127, 1071-1079.